
ARCHITECTURE-ADAPTIVE COMPUTING ENVIRONMENT: A TOOL FOR
TEACHING PARALLEL PROGRAMMING

John E. Dorband' and Maurice F. Aburdene2

Abstract

Recently, networked and cluster computation have become
very popular. This paper is an introduction to a new C
based parallel language f o r architecture-adaptive
programming, a c e C . The primary purpose of a c e
(Architecture-adaptive Computing Environment) is to
encourage programmers to implement applications on
parallel architectures by providing them the assurance that
future architectures will be able to run their applications
with a minimum of modlfication. A secondarypurpose is to
encourage computer architects to develop new types of
architectures by providing an easily implemented s o f i a r e
development environment and a library of test applications.
This new language should be an ideal tool to teach parallel
programming. In this paper, we will focus on some
fundamental features of ace C.

Index terms- Network Programming, Parallel Compiler,
Parallel Programming Language

Introduction

Parallel and networked computer programming techniques
have become popular and important computational tools
taught in first year courses [I]. This paper provides an
introduction to a new parallel programming language a c e C,
a superset of ANS C [2]. We believe a c e C is ideally suited
for teaching parallel programming once students have been
taught C. In this paper, we assume that the reader is
knowledgeable of ANS C. The concepts designed into ace
C have incorporated features found in parallel languages
such APL[3], DAP Fortran [4], Parallel Pascal[S], Parallel
Forth[6], C* [7], CM lisp [SI, FGPC [9], and MPL[10]. a c e
has been implemented on top of native C compilers such as
gcc and Maspar MPL and on top o f message passing
libraries such as Cray SHMEM, PVM [I 13, and MPI [12].

In this paper, we will focus on particular features of ace
C (from now on will refer to it as ace) with examples. For
more details on the language we refer the readers to see the
language reference manual [2].

a c e is based on the concept of structured parallel
execution. First the programmer designs a virtual
architecture that reflects the spatial organization of an
algorithm. A virtual architecture may consist of groups or

are:
0

e

0

0

e

bundles of threads of execution. Code is written reflecting
the temporal organization of the algorithm. The code defines
what each thread performs, which together with the virtual
architecture, defines the algorithm's execution.

ace is both data-parallel and task-parallel: data parallel
in that threads of a bundle execute the same code, and task
parallel in that threads of different bundles execute different
code.

a c e is architecture-adaptive, because different virtual
architectures may be used for different physical
architectures, to improve architecture dependent
performance with minor changes to the code.

Typically, a C program has one thread of execution.
This is the path that a computer takes through a program
while executing it. More sophisticated compilers and run
time environments may be able to infer from the code which
portions of the execution thread may be performed
concurrently without conflict. However, it is very difficult
to perform this task automatically. The a c e language allows
the programmer to explicitly express that which can be
performed concurrently, i.e. the parallelism, thus eliminating
the need for a compiler to second-guess the intents of the
programmer.

The purpose of a c e [2] is to facilitate the development
of parallel programs by allowing programmers to explicitly
describe the parallelism of an algorithm. The goals of a c e

to allow easy expression of algorithms in an
architecture independent manner.
to facilitate the programmer's ability to port and
implement algorithms on diverse computer
architectures.
to facilitate the programmer's ability to adapt and
implement algorithms on diverse computing
architectures.
to facilitate the optimization of algorithms on
diverse computing architectures.
to facilitate development of applications on
heterogeneous computing environments and
programming environments for new computer
architectures.

Basics

The following is an a c e program. Note that it looks no
different from a standard C program.

John E. Dorband, NASA Goddard Space Flight Center ,Greenbelt, MD 20771, dorband@gsfc.nasa.gov
Bucknell University, Electrical Engineering Department, Lewisburg, PA 17837, aburdene@bucknell.edu 2

Bundle of Hello Worlds
a c e program

* i
#include <stdio.aHr>

threads A[IO];

int main () {
A.{ printf(”Hel1o ace World\n“);]

1
This program will print “Hello a c e World” 10 times

because the printf command is performed by each of the 10
threads of A.

The difference between ace and C is that while C has
only one thread of execution, ace, may have many threads
of execution. Each thread may be referenced by name and
index. The ‘Hello World’ program’s primary thread is
implicitly named ‘MAIN’. This is important when it is
necessary to communicate between the ‘MAIN’ thread and
other threads executing concurrently with the ‘MAIN’. Note
that ‘main’ (lower case) is the name of a function.

Parallelism in ace is expressed by first defining a set of
concurrently executable threads. A group of parallel threads
can be viewed as a bundle of executing threads, a bundle of
processes, or an array of processors. These three views will
be treated synonymously. In ace, a bundle of threads is
defined with the ‘threads’ statement. The statement “threads
A[10]” only declares the intent of the programmer to use 10
concurrent threads of executions named ‘A’ at some later
point in the code.

These threads must be assigned storage before they can
execute any code. Each thread will have its own private
storage. Variables of a thread can not be accessed directly by
any other thread. In ace, there is no global storage, only
storage local to each thread. Storage is declared for a thread
by a standard C declaration preceded by the thread’s name.
All threads of a bundle will be allocated space for any given
declaration.

The following statement allocates an integer ‘aval’ for
each of the 10 threads of bundle ‘A’.

A int aval;

Once storage has been assigned to a thread, then code
may be written that will be executed by the thread. The
following is a simple piece of code that adds the ten values
of va12 to the ten values of va13 and stores the ten results in
the ten locations of vall .

threads A[lo];

A. {

1
Val1 = va12 + va13 ;

1

Granted, the values of va12 or va13 were never
initialized, but that is a different issue. The important point
here is that execution started with the function ‘main’ by the
lone thread ‘MAIN’, which transferred control to (forks) the
10 threads of ‘A’ to add the values of va12 to the values va13
before returning control to ‘MAIN’. For parallelism to be
useful, the storage of each thread must contain different
values. This can be done by different means: 1) read
different values into the storage of each thread, 2) copy a
built-in value that is unique to each thread into the storage of
the thread, or 3) obtain a unique value from another thread.
In the first case the, function ‘fread’ may be used to read
values into the storage of a thread.

A. { fread(&val2,sizeof(va12),1 ,file); }

The fread statement in the context of the threads of A
will read 10 values from the input file and put them in the 10
locations of va12 of the 10 threads of A. The second way of
putting a unique value into each of the 10 locations of va12
would be to assign a built-in value to va12.

A.{ va12 = $$i ;)

The statement will assign the value of the built-in value
‘$$i’ to va12. The value of ‘$$i’ is the index of the thread. In
the case of A, each thread will have a unique index from 0 to
9.

Previously, it was pointed out that a thread only has
direct access to storage local to itself. A thread, however,
can access storage of another thread indirectly through
communication operations. There are two basic
communication operations. In other parallel programming
paradigms, these are referred to as ‘get’ and ‘put’ operations.
The following is an example of an ace ‘get’ operation:

A.{ int a,b;
a = A[($$i+l)%$$N].b ;

1

In this example, the value of ‘b’ is fetch from one thread
of A to another thread of A. Remember that the value of $$i
is the index of the executing thread and that $$N is the
number of threads in the bundle A. Thus the value of
(($$i+l))%$$N) is the index of a thread other than the thread
performing the ‘get’ operation. The communication
operation uses this value to determine which thread to fetch
the value of ‘b’ from.

A int vall,val2,val3;

int main () {
The following statement is an example of an a c e ‘put’

operation:

2

int a,b;
A[($$i+l)%$$N].b = a ;

In this example, the value of ‘a’ of the current thread is
stored into ‘b’ of a different thread of A.

In summary, a c e allows the programmer to declare a
bundle of parallel threads of execution, allocate the storage
of each thread, define code to execute on threads
concurrently, and move values between threads. These are
the four essential concepts of ace: execution, storage, code,
and communication.

Bundles of threads

In the previous section, the bundle A was declared as a one-
dimensional array of threads. A bundle may actually be
declared with any number of dimensions. The statement

threads B[2][7][20] ;

declares the bundle B to have three dimensions of sizes 2, 7,
and 20 respectively and contain 280 threads.

One may also declare bundles of bundles of threads. In
the statement

threads { c[IO], d[20] } e[100] ;

‘e’ is a bundle of bundles of threads. ‘
bundles, each containing 2 bundles, one with 10 threads and
the other with 20 threads. One should view each bundle of
‘e’ as 1 e-thread, 10 c-threads, and 20 d-threads, where the
e-thread is the parent thread of the 10 c-threads and 20 d-
threads. Thus, there are a total of 3,100 threads defined by
the statement.

Since the definition of a bundle is recursive, a bundle
can contain any number of sub-bundles. Note that all
bundles are ‘descendents’ of the bundle ‘MAIN’. The
primary bundle of a bundle declaration, such as ‘e’, is an
immediate child bundle of ‘MAIN’. The statement

e’ consists of 100

threads { s[l l] , { { u[34], v[3] } w[102] } t[7] [7] } 2[100] ;

demonstrates the recursive nature of a bundle declaration.

Execution

All operations that can be performed by the thread, ‘MAIN’
(Le., any C code), may be performed by any bundle of
threads concurrently. The only operation supported by ANS
C, but not by a c e C is ‘goto’.

All code that is not labeled with the name of a bundle
will by default be executed by the lone thread ‘MAIN’. The
program entry point routine ‘main’ is run by the thread

‘MAIN’. To start code running on a bundle of threads other
than ‘MAIN’, a compound statement must be labeled with
the name of that bundle. A compound statement is code
enclosed in braces, {}. A compound statement can contain
any valid a c e code. The compound statement labeled with
the bundle name B,

B int a, b;
B.{ a=b; }

copies the value at location ‘b’ to the location ‘a’. However,
if a conditional statement is executed from within the labeled
compound statement,

B int a, b, z;
B.{ if(z) { a=b; } }

Some threads of ‘B’ will copy ‘b’ to ‘a’ while some will
not, depending on whether ‘z’ was true or not, respectively.
During the copy operation, all threads for which ‘2’ is true
are said to be ‘active’ and all threads for which ‘z’ is false
are said to be ‘inactive’.

Within the context of a segment of code for bundle ‘B’
all active threads of ‘B’ will execute the code, while all
inactive threads will remain idle. Initially, all threads of all
bundles are active, and each bundle will only execute code
explicitly designated for that bundle. Conditional statements
are used to make some threads of a bundle inactive for a
portion of code.

A labeled compound statement creates an execution
context in which a bundle of threads may execute code.
These execution contexts may be nested. For example, in the
statement

B.{ a=b; A.{ d=c; } x=y; }

all threads of B will copy ‘b’ to ‘a’, then all threads of A will
copy ‘c’ to ‘d’, and finally all threads of ‘B’ will copy ‘y’ to
‘x’:

This would be equivalent to the statement

B.{ a=b; } A.{ d=c; } B.{ x=y; }

Then why would it be necessary for contexts to be
nested? It is only necessary for contexts to be nested if the
execution of one context can implicitly affect the execution
of the other. This can happen if the contained context is
contained within a condition statement of the containing
context, as in the statement

In this example, if ‘a’ is true for any thread of B, then
‘y’ is copied to ‘x’ for all threads of A. Otherwise, if ‘a’ is

3

. .

false for all threads of B, then ‘y’ will not be copied to ‘x’
for any thread of A.

The next example is a little more complicated

B.{ if(a) { A.{ x=y; } } else { C.{ s=t; } } 1

As with the previous example, ‘x’ is copied to ‘y’ only
if ‘a’ is true for at least one thread of B. And ‘t’ is copied to
‘s’ if ‘a’ is false for at least one thread of B. An interesting
side effect of this statement is that ‘x’ will be copied to ‘y’
for all threads of A and ‘t’ will be copied to ‘s’ for all
threads of C as long as ‘a’ is true for some threads and false
for others. Putting it another way, if any thread of B is active
within the context of A, then all threads of A will be active.

Functions in a c e must be declared as to which bundle
may call them. This is done by preceding the routine’s
declaration with the name of the bundle.

B int aroutine(int c, int b) { ... code ... }

The function, aroutine, may be called from within the
context of any code executed by B.

variables for each of these categories: 1) the number of
threads within the category, 2) the log of the number of
threads within the category (if the number is a power of 2),
and 3) the sequential identifier of the thread within the
category. The definitions of the system constants are:

$$Name - the name of the bundle of threads (char*).
$$D - the number of dimensions of the bundle.
$$N - the total number of threads in the bundle (over all

sub-bundles).
$$L - the log base 2 of the total number of threads in the

bundle (equals -1 if
$$N - is not a power of 2).
$$i - the thread identifier of the thread with respect to

all the threads of the bundle.
$$ii - the physical thread identifier (where the thread is

executing within an architecture).
$$Nx[d] - the number of threads of d-th dimension of the

bundlehub-bundle.
$$Lx[d] - the log base 2 of the number of threads of d-th

dimension of the subbundle (equals -1 if $$Nx[d]
is not a power of 2).

$$ix[d] - the thread identifier of the thread in d-th
dimension of the bundle/subbundle.

Communication
The following example uses the bundle description:

A conditional expression can also affect communications.
Only active threads can initiate a ‘get’ or ‘put’ operation. In
the statement

B.{ if (a) { b=A[idx].x; } }

only threads of B for which ‘a’ is true actually fetch a value
from the storage location ‘x’ of a thread of A. And in the
statement

B.{ if (a) { A[idx].y = b; } }

only active threads of B will store (or put) values into
threads of A.

Threads of A need not be active to be fetched from or
have their storage modified. For example, in the statement

A.{ if (!$$i) { B.{ if (a) { A[idx].y = b; } } } }

all but one thread of A are made inactive; yet, any active
thread of B may store (or put) values into any thread of A
whether the thread of A is active or not.

Element Identification

Threads within a bundle are identified by system-defined
constants. There are two categories under which a thread can
be identified: 1) globally among all threads of a bundle and
2) within a dimension of a sub-bundle. There are three

threads { B[2][2] } A[2];

A A

4 0 0 5 0 1

2 1 0 3 1 1 6 1 0 7 1 1

Figure 1 : Bundle of Threads

A has 2 threads. In Figure 1, there is a pair of numbers under
each A. The first number is its value for $$i, and the second
is its value for $$ix[O]. There is a triplet under each thread of
B. The first number is its value of $$i, the second is its value
of $$ix[l], and the third is its value of $$ix[O]. Note that the
threads of ‘B’ form two sub-bundles, one under A[O] and
another under A[1]. A sub-bundle consists of all the threads
of a bundle that have the same parent thread (contained in
the parent bundle.) For example, ‘A’ is the parent bundle of
‘B’ and B[4], B[5], B[6], and B[7] make up a sub-bundle of
‘B’ whose parent thread is A[1] of bundle ‘A’ . The values
of the other system constants of A are:

$$NAME = ”A“, $$D = 1, $$N=2, $$L=l, $$Nx[O]=2,
$$Nx[1]= $$Lx[I]<undefined>, and $$Lx[O]=l..

The values of the other system constants of B are:

4

$$NAME = “B”, $$D = 2, $$N=8, $$L=3, $$Nx[O]=2,
$$Nx[1]=2, $$Lx[O]=I, and $$Lx[]]=I.

Input & Output (I/O)

I/O is defined as an order sequence of data that is to be
placed in a file. The data can be placed in the file
concurrently, but the order within the file will be ordered
sequentially. 110 in a c e is in order of thread identifier. For
example,

threads CLX3 [10001
CLX3.{ int buff;

buff = $$i ;
fwrite(&buff, sizeof(int), 1, FILEptr) ;

The thousand values of ‘buff will be written to the file
whose descriptor is located at FILEptr. If the above code is
contained within a conditional statement, only a subset of
the values of ‘buff, corresponding to the active threads, will
be written to the file. And in,

threads C[10001
C.{ int a;

a=$$i;
if ($$i<4 1 1 $$i>995)
fwrite(&a,sizeof(int), 1 ,FILEptr);

1
The code segment will write eight values into the file,

four from the first four threads of C and four from the last
four threads of C in that order. ace has another form of I/O,
it is called fast I/O. The fast I/O routines ffopen, ffread,
ffwrite, and ffclose correspond to the standard I/O routines
fopen, fread, fwrite, and fclose, except that their use is very
machine dependent. Files written by fast VO must be read by
fast I/O. Also, files written with fast YO must be read by a
bundle with exactly the same geometry as the bundle that
wrote. Fast I/O is intended to be implemented with the
fastest form of I/O available on the architecture, which may
differ from architecture to architecture.

Communications Path Descriptions

Communication between two threads is defined by a
communication expression. A communication expression
consists of two parts: the communication path description or
router expression, and the remotely evaluated numeric
expression. In the case of a fetch or get, the evaluated
numeric expression must evaluate to a value, while in the
case of a send or put operation, it must evaluate a remote
address. The router expression is used to define many
concurrent communication paths from threads of one bundle
to the threads of another, or even to the same bundle. In

threads A[]]; threads B[l];

A.{ int t; B int s; t = B[O].(s+l); }

B[O] is the router expression, (s+l) is the remote expression
that is executed on the threads of B, and t is the variable in
each of the threads of type A to which the values received
from the threads of type B are stored. The threads of B need
not be currently active to evaluate the expression (s+l).
However, a thread of B does need to be a thread which can
be fetched from for the expression to be evaluated. Though a
thread may have many threads fetching from it, the
expression will only be evaluated once. In effect, this
technique can be used to temporarily reactivate threads.

The router expression describes the path between the
remote execution context and the local execution context. If
the router expression is the source of a value (a gather or
fetch operation), the remote context computes a value, and
that value is fetched by the local context from the remote
thread that is described by the router expression. The
previous example demonstrates communications between
two single-thread bundles. For more details on path
descriptions see[2].

Scatter and Gather

Data is fetched from or sent to the threads of a remote
bundle depending on whether the router expression is on the
right or left side of an assignment. If the router expression is
on the right side of an assignment, it is a ‘gather’ from the
remote threads.

If the expression is on the left side of an assignment, it
is a ‘scatter’ to the remote threads. The following is an
example of a gather operation:

H.{ int a,x,y; B int b; a = .A.C[x].B[y].b ; }

Reversing the sides of assignment makes it a scatter
operation:

H.{ int a,x,y; B int b; .A.C[x].B[y].b = a; }

The value of ‘a’ in H is sent to the specified remote
variable ‘b’ of thread B. If a scatter add operation such as,

H.{ int a, x, y; B int b; .A.C[x].B[y].b += a; }
is performed and multiple values are sent to the same thread,
they are summed together. Since more than one thread can
send to the same thread, the data will either have to be
combined, or some will be lost. Therefore, when data is sent
to another thread, there are several options for combination
into the remote location, such as addition (+=), subtraction (-
=), multiplication (*=), division (/=), and (&=). or (I =) ,
exclusive-or (”=), minimum (?<=), and maximum (?>=).

5

A scatter operation returns a flag to the expression in
which it is contained, rather than a value. This flag indicates
whether or not the value being sent actually was received at
the destination thread.

H.{ int a, x, y; B int b; flag=(.A.C[x].B[y].b = a) ; }

In the above example, the values of ‘a’ in bundle H are
being sent to the variables ‘b’ in bundle B. The value of the
flag, after the values have been sent, is TRUE if the specific
value of ‘a’ actually reached the requested instance of ‘b’
and FALSE if it did not. There are two reasons a value may
not reach its destination: 1) the address of the destination
thread is not a valid one, or 2) the scatter operation is ‘=I. If
the scatter operation is ‘=I, at most one value will be received
by any destination thread. Therefore, only one of the source
threads that send to the same destination thread will have its
value received and its receive flag set to TRUE.

Pre-computed Paths

A fair amount of time in a communications operation may
be spent computing the identifiers of the remote threads
involved in the communications. The ability to define a path
description as a variable that is computed at run time allows
a path description to be pre-computed and optimized once,
and yet used many times. This amortizes the cost of
computing a path descriptor across multiple uses of the
descriptor. A path is declared as follows:

H.{ path(B) toB; int aO,al,a2,x,y; B int bO,bl,b2;
toB = C[x].B[y]. ;
@toB.bO = a0 ;
@toB.bl = a l ;
@toB.b2 = a2 ; }

The path toB is a path from the local context of H to the
remote context of B. Note in the above example, toB was
computed once but was used in three communications
operations. Pointers to or arrays of paths may also be
declared.

H.{ path(B) toB[4]; @toB[l].bl = a1 ;)
H.{ path(B) *toB; @(*toB).bl = a1 ; }

An array element from a path array need not be
enclosed in parentheses when used, but a pointer to a path or
any address expression that points to a path does.

Generic Routines

Most routines are specific to only one bundle. Some,
however, are useful to many bundles. These are referred to
as generic routines. A generic routine is declared by
preceding it with the key word generic in place of a specific

bundle name. Trigonometric functions are examples of such
routines. There is nothing about a sine function, for example,
that makes it inherently specific to any bundle. A sine
function can be applied to all threads of a bundle and is
trivially parallel (i.e., requires no communication between
threads.) This makes it a simple generic routine, and allows
it to be executed within the context of any bundle. An
example of a simple generic routine is:

generic double sin (double x) { ... C code ... }

Generic routines can also include inter-processor
communication. These are complex generic routines. A
complex generic routine also can have a bundle as an
argument.

Summary

We have introduced a new computer language, a c e C, that is
ideally suited to parallel, networked, and cluster computing.
We have presented the basics of the language, the concept of
threads and bundles of threads, execution of programs,
communication, element identification, input and output
(VO), communications path description, scatter and gather,
pre-computed paths, and generic routines. These tools and
the a c e C language greatly enhance the teaching of parallel
programming.

References

[I] Wilkinson, B. and Allen, M. Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers,
Prentice Hall, 1999.
Dorband, J.E., “ace C Reference”, NASA Goddard Space Flight
Center, Greenbelt, MD.
Iverson, K.E., A Programming Language, Wiley, New York, 1962.
DAP-FORTRAN Language, International Computers Ltd., TP 6918.
Reeves A.P., Bruner J.D., The Language Parallel Pascal and other
Aspects of the Massively Parallel Processor, School of Electrical
Engineering, Cornell University, December 1982.

[6] Dorband, J.E., ”MPP Parallel Forth”, Proceedings of the First
Symposium on the Frontiers of Massively Parallel Scientific
Computation, pg. 21 1-215, 1986.
Rose, J., Steele, G., “C*: An Extended C Language for Data Parallel
Programming”, Presented at the Second International Conference on
Supercomputing, May 1987.
Steele, G., Wholey, S., “Connection Machine Lisp: A Dialect of
Common Lisp for Data Parallel Programming,” August, 1987.
Hamet, L.E., Dorband, J.E., “A generic fine-grained parallel C”,
Proceedings of the Second Symposium on the Frontiers of Massively
Parallel Computation, October 1988, Fairfax, VA, pp 625-628.

[IO] MPL (MasPar Programming Language) Reference Manual, MasPar
Computer Corp., Pt No. 9300-9034-00 Rev A2.

[I I] Gropp, W. Lusk, E. and Skjellum, A. Using MPI, 2nd Edition, MIT
Press, 1999.

[I21 Geist, A,, Beguelin, A,, Dongarra, J., Jiang, W., Manchek, R. and
Sunderam, V.S., PVM- A Users’ Guide and Tutorial for Networked
Parallel Computing, MIT Press, Boston, 1994.

[2]

[3]
[4]
[5]

[7]

[8]

[9]

6

